Как применять свойство дистрибутивности при решении уравнения

Дистрибутивность (свойство дистрибутивности, распределительный закон) гласит, что произведение числа и суммы чисел равно сумме произведения числа и отдельных слагаемых. Это означает, что a(b + c) = ab + ac. Вы можете использовать это основное свойство при решении и упрощении разнообразных уравнений. Если вы хотите знать, как использовать свойство дистрибутивности при решении уравнения, следуйте этим шагам.

Метод 1 из 4: Используем основное свойство дистрибутивности
Изображение с названием Use Distributive Property to Solve an Equation Step 1
1
Перемножьте число (член) за скобками и числа (члены) в скобках. Умножьте число за скобками на первое слагаемое в скобках, а затем умножьте его на второе слагаемое. Если слагаемых больше чем два, умножьте число за скобками на все слагаемые в скобках. Вот как это сделать:
  • Например: 2(x - 3) = 10
  • 2(x) - (2)(3) = 10
  • 2x - 6 = 10
  • Изображение с названием Use Distributive Property to Solve an Equation Step 2
    2
    Сложите подобные члены. Прежде чем приступить к решению уравнения, необходимо сложить подобные члены. Сложите все свободные члены и члены с переменной "х". Перенесите все свободные члены на одну сторону уравнения, а члены с неизвестным – на другую.
  • 2x - 6(+6) = 10 (+6)
  • 2x = 16
  • Изображение с названием Use Distributive Property to Solve an Equation Step 3
    3
    Решите уравнение. Найдите "х", разделив обе части уравнения на 2.
  • 2x = 16
  • 2x/2 = 16/2
  • x = 8
  • Метод 2 из 4: Используем свойство дистрибутивности. Более сложная задача
    Изображение с названием Use Distributive Property to Solve an Equation Step 4
    1
    Перемножьте число за скобками и числа в скобках. Это делается так же, как в предыдущей главе, но здесь мы будем использовать свойство дистрибутивности более одного раза.
    • Например: 4(x + 5) = 8 + 6(2x - 2)
    • 4(x) + 4(5) = 8 + 6(2x) - 6(2)
    • 4x + 20 = 8 +12x -12
  • Изображение с названием Use Distributive Property to Solve an Equation Step 5
    2
    Сложите подобные члены. Перенесите все свободные члены на одну сторону уравнения, а члены с неизвестным – на другую.
  • 4x + 20 = 8 +12x -12
  • 4x + 20 = 12x - 4
  • 4x -12x = -4 - 20
  • -8x = -24
  • Изображение с названием Use Distributive Property to Solve an Equation Step 6
    3
    Решите уравнение. Найдите "х", разделив обе части уравнения на -8.
  • -8x/-8 = -24/-8
  • x = 3
  • Метод 3 из 4: Дистрибутивность при отрицательных коэффициентах
    Изображение с названием Use Distributive Property to Solve an Equation Step 7
    1
    Перемножьте число за скобками и числа в скобках. Если это число - отрицательное, то действуйте согласно правилам операций с отрицательными числами. Если вы умножаете отрицательное число на положительное, то результат отрицательный- если вы умножаете отрицательное число на другое отрицательное число, то результат будет положительным.
    • Например: -4(9 - 3x) = 48
    • -4(9) - -4(3x) = 48
    • -36 -(-12x) = 48
    • -36 + 12x = 48
  • Изображение с названием Use Distributive Property to Solve an Equation Step 8
    2
    Сложите подобные члены. Перенесите все свободные члены на одну сторону уравнения, а члены с неизвестным – на другую.
  • -36 + 12x = 48
  • 12x = 48 - -(36)
  • 12x = 84
  • Изображение с названием Use Distributive Property to Solve an Equation Step 9
    3
    Решите уравнение. Найдите "х", разделив обе части уравнения на 12.
  • 12x/12 = 84/12
  • x = 7
  • Метод 4 из 4: Упрощение уравнения
    Изображение с названием Use Distributive Property to Solve an Equation Step 10
    1
    Найти наименьшее общее кратное (НОК) для знаменателей дробей в уравнении. Для нахождения наименьшего общего кратного двух чисел просто найдите наименьшее число, которое делится на оба данных числа. Числа в знаменателях 3 и 6, и 6 - наименьшее число, которое делится на 3 и на 6.
    • x - 3 = x/3 + 1/6
    • НОК = 6
  • Изображение с названием Use Distributive Property to Solve an Equation Step 11
    2
    Умножьте все члены уравнения на НОК. Теперь заключите в скобки все члены исходного уравнения (на каждой стороне уравнения) и поставьте НОК за скобками. Затем перемножьте НОК и слагаемые в скобках. Умножение обеих частей уравнения на одно и то же число не меняет конечного результата уравнения, но приведет к виду уравнения без дробей.
  • 6(x - 3) = 6(x/3 + 1/6)
  • 6(x) - 6(3) = 6(x/3) + 6(1/6)
  • 6x - 18 = 2x + 1
  • Изображение с названием Use Distributive Property to Solve an Equation Step 12
    3
    Сложите подобные члены. Перенесите все свободные члены на одну сторону уравнения, а члены с неизвестным – на другую.
  • 6x - 2x = 1 - (-18)
  • 4x = 19
  • Изображение с названием Use Distributive Property to Solve an Equation Step 13
    4
    Решите уравнение. Найдите "х", разделив обе части уравнения на 4.
  • 4x/4 = 19/4
  • x = 19/4 or 16 3/4

  • Внимание, только СЕГОДНЯ!

    » » » Как применять свойство дистрибутивности при решении уравнения