Цилиндр, площадь цилиндра

Цилиндр (происходит из греческого языка, от слов "каток", "валик") - это геометрическое тело, которое ограничено снаружи поверхностью, называющейся цилиндрической, и двумя плоскостями. Данные плоскости пересекают поверхность фигуры и являются параллельными друг другу.

Цилиндрическая поверхность - это поверхность, которая получена поступательными движениями прямой линии в пространстве. Эти движения таковы, что выделенная точка этой прямой линии совершает движение вдоль кривой плоского типа. Такая прямая линия называется образующей, а кривая линия - направляющей.

Цилиндр состоит из пары оснований и боковой цилиндрической поверхности. Цилиндры бывают нескольких видов:

1. Круговой, прямой цилиндр. У такого цилиндра основания и направляющая перпендикулярны образующей линии, и имеется ось симметрии.

2. Наклонный цилиндр. У него угол между образующей линией и основанием не является прямым.

3. Цилиндр иной формы. Гиперболический, эллиптический, параболический и другие.

Площадь цилиндра, а также площадь полной поверхности любого цилиндра находится с помощью сложения площадей оснований этой фигуры и площади боковой поверхности.

Формула, по которой вычисляется полная площадь цилиндра для кругового, прямого цилиндра:

Sp = 2п Rh + 2п R2 = 2п R (h+R).

Площадь боковой поверхности ищется чуть сложнее, чем площадь цилиндра целиком, она вычисляется путем умножения длины образующей линии на периметр сечения, образованного плоскостью, которая перпендикулярна образующей линии.

Данная площадь поверхности цилиндра для кругового, прямого цилиндра узнается по развертке этого объекта.

Развертка - это прямоугольник, который имеет высоту h и длину P, которая приравнивается периметру основания.

Отсюда следует, что боковая площадь цилиндра является равной площади развертки и может быть вычислена по данной формуле:

Sb = Ph.

Если взять круговой, прямой цилиндр, то для него:

P = 2п R, а Sb = 2п Rh.

Если цилиндр наклонный, то площадь боковой поверхности должна быть равна произведению длины его образующей линии и периметра сечения, которое перпендикулярно данной образующей линии.

К сожалению, не существует простой формулы для выражения площади боковой поверхности наклонного цилиндра через его высоту и параметры его основания.

Чтобы вычислить площадь сечения цилиндра, необходимо знать несколько фактов. Если сечение своей плоскостью пересекает основания, то такое сечение всегда является прямоугольником. Но эти прямоугольники будут разными, в зависимости от положения сечения. Одна из сторон осевого сечения фигуры, которое перпендикулярно основаниям, равна высоте, а другая - диаметру основания цилиндра. А площадь такого сечения, соответственно, приравнивается произведению одной стороны прямоугольника на другую, перпендикулярную первой, или произведению высоты данной фигуры на диаметр его основания.

Если сечение будет перпендикулярно основаниям фигуры, но не будет проходить через ось вращения, то площадь этого сечения будет равна произведению высоты этого цилиндра и определенной хорды. Чтобы получить хорду, нужно построить окружность у основания цилиндра, провести радиус и отложить на нем расстояние, на котором находится сечение. А от этой точки нужно провести перпендикуляры к радиусу от пересечения с окружностью. Точки пересечения соединяются с центром. А основание треугольника - это искомая хорда, длина которой ищется по теореме Пифагора. Теорема Пифагора звучит так: «Сумма квадратов двух катетов равна гипотенузе, возведенной в квадрат»:

С2 = А2 + В2.

Если сечение не затрагивает основания цилиндра, а сам цилиндр круговой и прямой, то площадь этого сечения находится как площадь окружности.

Площадь окружности равна:

S окр. = 2п R2.

Чтобы найти радиус окружности R, нужно ее длину C разделить на 2п:

R = C 2п, где п - число пи, математическая постоянная, вычисленная для работы с данными окружности и равная 3,14.


Внимание, только СЕГОДНЯ!

» » » Цилиндр, площадь цилиндра